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(R=sulfonyl, alkyl, acyl)

1,2-Cyclic sulfamidates undergo regiospecific nucleophilic displacement with either methyl thioglycolate or a-amino esters, followed by
lactamization (thermal, base-mediated, or cyanide-catalyzed), to give thiomorpholin-3-ones and piperazin-2-ones.

Cyclic sulfates and cyclic sulfamidates represent a versatile We previously reported the use of 1,3-cyclic sulfates as
class of functionalized and enantiomerically pure electro- components of a [3- 3] annulation approach to piperidings.
philes. As a result, these reactive alkylating agents are findingC,N-Bis nucleophiles, e.g., enolaie enable a stepwise,
increasing synthetic applications across a range of dreas.double displacement of a cyclic 1,3-cyclic sulfé&do be
achieved in a regio- and stereocontrolled manner, providing

T University of Bristol. functionalized piperidines (Scheme 1).
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1,2-Cyclic sulfamidate8* provide an attractive alternative
entry to N-heterocycles by allowing the key—-@ bond

stereochemistry to be defined at the outset and retained. Our

approach is outlined in Scheme 2, usidgas the other
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component, where a heteroatom nucleophile is adjacent to

an acetate moiety. This combination would allow a regio-
selective nucleophilic displacement to occur3y(€—0O bond
cleavage always being favored over-8 bond cleavage),
followed by lactamization (involving the adjacent acetate
fragment) to give a six-ringN-heterocycle.

This chemistry has been explored using both methyl
thioglycolate4aand a range ofi-amino esters (cib), which

Scheme 3. Synthesis of Substituted Thiomorpholin-3-ohes
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aReagents and conditions: (a) NaH¢Q:1 THF/HO or

leads to thiomorpholine and piperazine derivatives, respec-CCO;, THF; (b) 5 M HCI, rt, then NaHCg) (c) PhMe, reflux, 3

tively. The synthesis of thiomorpholin-3-onBss outlined

in Scheme 3.Base-mediated reaction of methyl thioglycolate
4a with cyclic sulfamidate3a® gave the thiomorpholin-3-
oneb5ain 97% yield. The optimized procedure used either
NaHCG; or CsCO;s as a base, and after initial nucleophilic
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displacement, acidic hydrolysis (of the intermedidte
sulfate) was followed by neutralization and thermolysis to
achieve lactamization.

Similarly, the ephedrine-derived sulfamid&e’ gave the
trans 5,6-disubstituted thiomorpholin-3-asig® in 85% yield,
the structure of which was confirmed by X-ray crystal-
lographic analysis (Figure 1). We were also interested in the
ability of a 3-substituted cyclic sulfamidat (the regio-
isomer o0f3a) to participate in this process. In the event, the

Figure 1. Structure of5b.
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racemic 6-substituted thiomorpholin-3-oBe, which is the
regioisomer ofba, was isolated in excellent yield.

The method is also applicable to bicyclic sulfamidates,
such as3d, which provided the corresponding bicyclic
thiomorpholinonesd in 35% yield. The synthesis &d was
problematic because hydrolysis of the initially formed
N-sulfate was very slow under our standard reaction condi-
tions, and extended reactions times may have contributed to
the lower yield observed in this case.

o-Amino esters are also reactive toward 1,2-cyclic sulf-
amidates, and this provides a flexible entry to piperazine
derivative$ (Scheme 4). Use of th&y-phenylalanine-derived
1,2-sulfamidate3a as a prototype in reaction witN-tosyl
glycine ethyl ester6a gave the differentially protected
piperazin-2-oné&/a in 84% yield.

It was important to validate the ability of a base-sensitive
stereocenter to withstand the conditions used in this chem-
istry. This was established using amino estébsand 6¢
derived from (R)-and (S)-alanine, respectively. Reaction of
each amino ester witBa gave the correspondirtgans- and
cis-3,6-disubstituted piperazin-2-onésand7c, respectively.

In neither case was the other diastereomer detected, thus

demonstrating the stability of these epimerizable substrates
to the particular conditions used (however, see below).

A more hindered variant, such &sl, gave piperazinone
7d, and in this case, lactamization was successfully carried
out under both thermal and base-mediated conditions in 50
and 78% vyields, respectively. The ephedrine-derived sulf-
amidate3b, which now requires the amino ester to displace
at a secondary center, did react wifa to give the
5,6-disubstituted piperazin-2-of@ in 25% yield® While
azide ion is known to react well with secondary cyclic
sulfamidates, amine nucleophiles do require significantly
more forcing condition&!

An important issue associated with this approach to the

synthesis of substituted piperazines became apparent with,

(7) Sulfamidategb,*" 3c, and3d were prepared from the corresponding

Scheme 4. Synthesis of Substituted Piperazin-2-ches
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aReagents and conditions: (a) NaH or,C6s;, DMF; (b) 5 M
Cl, rt, then NaHCQ@, (c) PhMe, reflux, 18 h; (d) NaOEt, EtOH,
eflux. bYield using thermal lactamizatiorfYield under base-
mediated lactamization conditions.

H

amino alcohols using essentially the same procedures as those u8ed for
In the case oBc, racemic amino alcohol was used.

(8) The cis and trans morpholine analogue$bfare known (Spassov,

S. L.; Stefanovsky, J. N.; Kurtev B. J.; Fodor, Ghem. Ber1972,105,
2467-2475), but the coupling constants associated with H(5) and H(6) that
were reported did not correlate well to those observe8lioior this reason,

the relative configuration obb was established by X-ray crystallographic
analysis.
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Schanen, V.; Cherrier, M. P.; de Melo, S. J.; Quirion, J.-C.; Husson, H.-P.
Synthesid 996, 833—837. Nefzi, A.; Giulianotti, M. A.; Houghten, R. A.
Tetrahedron Lett1999,40, 8539—8542. Dinsmore, C. J.; Zartman, C. B.
Tetrahedron Lett.2000, 41, 6309—6312. Rubsam, F.; Mazitschek, R.;
Giannis, A.Tetrahedron2000, 56, 8481—8487. Gonzalez-Gémez, J. C.;
Uriarte-Villares, E.; Figueroa-Pérez, Synlett2002 1085-1088. Viso, A.;

de la Pradilla, R. F.; Lopez-Rodriguez, M. L.; Garcia, A.; TortosaSihlett
2002 755—758. Beshore, D. C.; Dinsmore, C.Qrg. Lett.2002 4, 1201—
1204.

(10) The stereochemistry afe is based on comparison withb, the
structure of which was unambiguously assigned (see Figure 1).

(11) Azide displacement: Li, G.; Chang, H. T.; Sharpless, KABgew.
Chem., Int. Ed. EnglL996,35, 451—-454. Amine nucleophiles require 125
°C in a steel bomb: Zubovics, Z.; Toldy, L.; Varro, A.; Rabloczky, G.;
Kurthy, M.; Dvortsak, P.; Jerkovich, G.; Tomori, Eur. J. Med. Chem.
1986,21, 370—378.
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(9-proline ethyl estet6e and ethyl ($-pyroglutamate6f.
Reaction of3a with 6e gave, after hydrolysis, the initial
adduct8. Thermal lactamization (xylene, reflux) was slow
and very inefficient, bu?f was isolated without epimeriza-
tion at C(8a) being detected. More rapid (and essentially
guantitative) lactamization & was achieved using NaOMe

(in MeOH); however, under these conditiofwas obtained

as a 1:1 mixture of diastereomers, epimeric at C(8a) (Scheme
5).

These problems (slow lactamization vs facile epimeriza-
tion) were overcome by using catalytic sodium cyafide
promote the final ring-closure step (8§, which gaverf as
a single diastereomer in 50% yield.

Analogous problems were encountered when etBy} (
pyroglutamatesf was employed and were also solved using
catalytic cyanide to achieve lactamization, and under these

(12) Mori, K.; Tominaga, M.; Takigawa, T.; Matsui, Nbynthesi4973
790—791. Hogberg, T.; Strdm, P.; Ebner, M.; R&msbyJ.S0rg. Chem.
1987,52, 2033—2036.
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Scheme 5. Synthesis of Bicyclic Piperazinones. Base vs Scheme 6. Use of Primary Amino Ester Nucleophifes
Thermal vs Cyanide-Mediated Lactamization o o
L) 4_\/% B, \k,
N BnN BnN o]
Et0,C" "N Et0,C" "N O BOCT  NM e JS\IR
: H bg N Ph—s
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aReagents and conditions: (a) DIPEA, EtOH, rt; (b) 5 M HCI,

1:1 mixture of
ClS[OW diasterecisomers at C(8a) rt, then NaHCQ.
Be ab i H
then e anjkb In summary, 1,2-cyclic sulfamidates, which are easily
S0% Ph SN prepared from the corresponding 1,2-amino alcohols, provide
7t a flexible and generally efficient entry to a range of
0. o o N-heterocycles based on thiomorpholines and piperazines,
Y74 H . . .
a0 ab -~ the scope of which is reflected by the range of sulfamidates
on \ S 'K/N used. It is important to appreciate the advantages that 1,2-
~ sa W cyclic sulfamidates offer over related electrophiles such as
7g63% O aziridines. Sulfamidates readily undergo a regiospecific

aReagents and conditions: (a) NaH, DMF, tt: (b) 5 M HCI. displacement (compaBaand3c, Scheme 3), and application
then NaHCG; (c) xylene, reflux, >24 h (<10;%)’; (d) NaOMe’, ' of this chemistry to provide other classes\vheterocycles

MeOH; (e) NaCN (5-10 mol %), MeOH, reflux; (f) NaCN (510 is currently underway.
mol %), EtOH, 50°C.
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conditions, the bicyclic adductg was isolated as a single
diastereomer in 63% overall yield.

The use of primary amino estég failed to react withi3a
to give the desired piperazine prod@cin this case, a facile
double N-alkylation of6g occurred, which could not be
suppressed. This led to the 2:1 addL@in 60% yield (based Supporting Information Available: Experimental details
on 3a) (Scheme 6). In this case, formation of oxazolidinone and characterization data for all new compounds, including
11 (11%) was observed, which arises from the use of crystallographic details fdsb. This material is available free
NaHCGQ;.14 of charge via the Internet at http://pubs.acs.org.

(13) In the case off, NaCN in MeOH at reflux was more efficientthan ~ OL027418H
use of EtOH at 50C. Formation of7g via thermal lactamization (xylene,
5 days, reflux) proceeded in 48% yield, and no stereochemical scrambling

at C(8a) was observed. Piperazifrgwas also isolated in 50% yield using (14) This is a known proceg8put attempts to prevent production bt
NaCN (10 mol %) in MeOH at reflux. Cyanide may mediate lactamization (a major byproduct under our standard conditions) using NaOH led to low
via transesterification when MeOH is used as a solvent7gutas formed mass recovery. Also, lactamization to git@ occurred directly following
efficiently using EtOH as a solvent. neutralization.
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